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We introduce a nongrowth model that generates the power-law distribution with the Zipf exponent. There are
N elements, each of which is characterized by a quantity, and at each time step these quantities are redistributed
through binary random interactions with a simple additive preferential rule, while the sum of quantities is
conserved. The situation described by this model is similar to those of closed N-particle systems when con-
servative two-body collisions are only allowed. We obtain stationary distributions of these quantities both
analytically and numerically while varying parameters of the model, and find that the model exhibits the
scaling behavior for some parameter ranges. Unlike well-known growth models, this alternative mechanism
generates the power-law distribution when the growth is not expected and the dynamics of the system is based
on interactions between elements. This model can be applied to some examples such as personal wealths, city
sizes, and the generation of scale-free networks when only rewiring is allowed.
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I. INTRODUCTION

Power-law distributions have been observed in diverse
fields for more than a century �1�. Some well-known ex-
amples exhibiting “scaling” behavior are city sizes �2–4�,
word frequencies �5�, sizes of business firms �6�, personal
incomes �7,8�, personal wealths �9–11�, sizes of web sites
�12�, numbers of links of web pages �13�, connections of
routers in the Internet �14�, species in genera �15�, interac-
tions of proteins �16�, citations of scientific papers �17�, and
so on, covering many research fields such as biology, eco-
nomics, sociology, engineering, and physics. Many genera-
tive models have been introduced so far to explain this ubiq-
uitous phenomenon �18�, and most of them use simple
mechanisms that give rise to the power-law distributions.
One group of models uses stochastic multiplicative processes
�3,7,19�, and another group uses preferential growing mecha-
nisms �5,15,20�. These models have their root in the Gibrat’s
law of proportional growth �6�, and are based on two as-
sumptions: the growth of the system and the noninteraction
between elements. There are also nongrowth models in
which the main mechanism is the interaction between ran-
domly chosen elements, resulting in the multiplicative
changes of values �9,10,21,22�. Systems showing the scaling
behavior consist of N elements �N may vary with time�,
while each element i �1� i�N� is represented by the quan-
tity ki, and the probability of an element having the value k,
P�k�, has the form k−� for a given range of k.

Here we introduce a nongrowth model exhibiting the
power-law distribution with the Zipf exponent ��=2�, in
which quantities of elements are redistributed through binary
random interactions with a simple additive preferential rule.
The model assumes that N and the sum of all ki’s are con-
served, and that, when two elements i and j are chosen ran-
domly at a given time, ki and kj will be changed additively
while preserving ki+kj. This model can be a mechanism that

explains scaling behavior of many socioeconomical systems,
especially when the growth is not expected and interactions
between elements are vital to their dynamics. Moreover, this
model can be extended to generate scale-free networks
through rewiring only, because the rewiring process by
changing an end point of a link changes the degrees of two
nodes additively while preserving the sum of the degrees of
all nodes.

In this paper, the model and its stationary distributions are
investigated both numerically and analytically. In Sec. II, the
model is described in detail. In Sec. III, the master equation
is obtained. Stationary distributions are found numerically
first, and then analytically solved. And the condition for the
power-law distributions in the parameter space is also found
using both numerical and analytic methods. In Sec. IV, three
possible applications of this model are discussed. Finally, in
Sec. V, we summarize our results.

II. MODEL

Let us introduce our stochastic model in detail. The model
assumes that ki’s are non-negative integers, and we define �
as the average quantity per element,

� � �
k=0

�

kP�k� = �k� . �1�

At each time step T, two elements i and j are randomly
chosen, and the element i gives one unit of the quantity to the
element j with the exchange probability R; hence their quan-
tities are changed additively, ki→ki−1 and kj→kj +1, while
ki+kj is conserved �as a result, � becomes a conserved quan-
tity�. In other words, i is the giver and j is the taker, while the
probability of nonexchange is 1−R. One simple way to give
an advantage to an element with bigger k is letting R depen-
dent on ki and kj as below,*Electronic address: suhan@kongju.ac.kr
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R = 	1 �0 � ki � kj� ,

� �ki � kj� ,

0 �ki = 0� ,

 �2�

where � is a constant in the range of 0���1. In this model,
we can represent the system with three independent param-
eters: N, �, and �. When a distribution is given initially at
T=0, P�k� will evolve as T increases, and eventually reach a
stationary distribution. To express the cumulative distribu-
tion, we also define P��k��	k�=k

� P�k��.
The parameter � plays an important role in this model.

Two special cases of �=0 and �=1 have been previously
discussed in the context of conserved exchange processes
�9,10,23�. The focus of this paper, however, is the general
case of 0���1. When ��1, the time-reversal symmetry
of the dynamics is broken, and at the same time the elements
with bigger k �“the rich”� get an advantage over those with
smaller k �“the poor”�. Then this model becomes one of rich-
get-richer mechanisms, which will generate broad stationary
distributions. In the next section, we will show that the sta-
tionary distribution from this model exhibits the power law
when � is less than a certain critical value, and that this
critical value will depend on the value of �.

III. STATIONARY DISTRIBUTIONS

First we look at the dynamics of an element with the
quantity k to focus on the evolution of an element. To gain
one unit, an element should be chosen as the taker with the
probability 1 /N, and the probability of an element gaining
one unit, T+�k�, depends on the choice of the giver. Similarly
the probability of an element losing one unit, T−�k�, when
chosen as a giver, can be found

T+�k� = �1 − P�0� − �1 − ��P��k + 1�� ,

T−�k� = �1 − 
k0��� + �1 − ��P��k�� . �3�

Then, for an element, the expected change of k after a time
step, �k, is �T+�k�−T−�k�� /N. Since �k is not proportional to
k, the Gibrat’s law is not satisfied. In a sense, each element is
performing the random walk if we regard k as the position,
while the transition probability found in Eq. �3� is asym-
metrical, position-dependent, and time varying.

If we use the continuous approximation as N→�, the
master equation can be obtained,

�P�k� = �P�k − 1�T+�k − 1� − P�k�T−�k��

− �P�k�T+�k� − P�k + 1�T−�k + 1�� , �4�

where �P�k� is the expected change of P�k� after one time
step. Then from the condition for the stationary distribution,
�P�k�=0 �"k ,k�0�, we find that stationary distributions
should satisfy these nonlinear equations

P�k + 1� =
T+�k�

T−�k + 1�
P�k�

=
1 − P�0� − �1 − ��P��k + 1�

� + �1 − ��P��k + 1�
P�k� , �5�

for k�0, because, in Eq. �4�, there are two parts, two terms
each, and each part should be zero when �P�k�=0. Even
though we can theoretically find P�k� as a function of � and
� using Eqs. �1� and �5�, these nonlinear equations are not
easily solved analytically except for some special cases.

A. Case of �=0

This is a trivial winner-take-all situation. When �=0, the
rich will always win for every binary interaction. Even with-
out solving Eq. �5�, the stationary state and its distribution
are trivially found. In the stationary state, one element has all
quantities, k=�N, and the other elements have no quantity,
k=0; therefore the stationary distribution is

P�k� =
N − 1

N

k0 +

1

N

k,�N. �6�

As N→�, P�k� becomes 
k0 approximately.

B. Case of �=1

When �=1, the model describes the conserved ran-
dom exchange process, which was already discussed previ-
ously �9,23�. From Eq. �5�, we easily find P�k� exactly as
�1− P�0��kP�0�. After substituting P�k� into Eq. �1� to find
P�0�, we obtain the stationary distribution,

P�k� =
1

1 + �
� �

1 + �
�k

. �7�

As �→�, P�k� becomes �1/��exp�−k /��, which is the
Boltzmann-Gibbs distribution.

C. Case of 0���1

In this general case, the rich have an advantage over the
poor, but lose to the poor from time to time. This property
keeps the stationary distribution balanced somewhere be-
tween those from two extreme cases discussed above. Since
the analytic method cannot be solely used in this case, the
model is numerically investigated first.

After performing extensive numerical simulations
while varying N, �, and �, we found that the stationary dis-
tributions exhibit the power law when � and � satisfy a
certain condition; that is, it is scaling when �� ,�� is inside a
region in �� ,��-space, represented by a condition such as
f�� ,����, where f�� ,�� and � will later be found in this
section. In Fig. 1, we show a scaling case of N=105, �=1,
and �=0.1. As time increases, the initial distribution, 
k1,
evolves to a power-law stationary distribution, which is
shown using the cumulative distribution, P��k�. �In all
simulations here, � is a positive integer, and the initial dis-
tributions of the 
-function form, 
k�, will be used.�
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One common property that stands out in all scaling cases
like the one in Fig. 1 is that P�0�
1−� whenever the
distribution is scaling. This property can be analytically
proven by solving Eq. �5� when P�0� is given as 1−�. Since
P��k+1�=1−�k�=0

k P�k��, P�k+1� can be represented as a
function of P�0� , . . ., P�k�, and �. When k=0, P�1� can be
found as a function of P�0� and �, and when k=1, P�2� can
also be found as a function of P�0� and � using P�1� ob-
tained already. If we repeat this process, �P�k� �k�1� will all
be found as a function of P�0� and �. When we substitute
P�0�=1−�, found numerically in scaling cases, we can ob-
tain P�k� and P��k� in closed forms as below

P�k� =
�

1 − �

1

�k + 1/�1 − ����k + �/�1 − ���
,

P��k� =
�

1 − �

1

k + �/�1 − ��
. �8�

This is the Zipf’s law, P�k�
k−2 and P��k�
k−1, valid when
k�1−�� is big enough. The shape of P�k� in Eq. �8� does not
depend on �, but as we will show later � will play a signifi-
cant role in deciding whether the system is scaling or not.

As shown above, the relation P�0�=1−� is the condition
for the scaling stationary distributions. In other words, a scal-
ing condition for � and � can be found if we find a condition
with which the condition P�0�=1−� holds. To observe when
the relation P�0�=1−� holds, we find P�0� for various � and
� values using numerical simulations. In Fig. 2, we show
P�0� versus �, and P�0� versus � when N=104. When �
is given, P�0� equals to 1−� when � is greater than a certain
critical value, �c���, and when � is given, P�0� equals to
1−� when � is less than a certain critical value, �c���
��=�c��� is the inverse functions of �=�c����. Therefore
we find that a critical relation exists for the system to exhibit
the scaling behavior, and the boundary between the scaling
region and nonscaling region is represented by �=�c���.

How do we estimate this critical boundary in �� ,��-space
analytically? One possible argument uses the highest k value,
kM. Since N is finite in the model, the power law will be
valid only for a finite range of k, and the position of cutoff,
kM, depends on N, �, and �. Especially when Eq. �8� is
satisfied �scaling cases�, we can estimate kM by solving the
equation below,

� = �
k=0

kM

kP�k�



�

1 − �
�

0

kM

dk� k

�k + 1/�1 − ����k + �/�1 − ���� , �9�

which is a modification of Eq. �1� by letting P�k�=0 when
k�kM �reasonable because P�k� obtained from the continu-
ous approximation is not valid when N is finite and k is
high�. By solving Eq. �9�, the estimated value of kM for scal-
ing cases is

kM 

�

1 − �
�1/�1−�� exp� �

�/�1 − ��� . �10�

Then we can find the ratio of the number of elements that are
supposed to be in the region k�kM to the total number of
elements N, which can be obtained from P��k� at k=kM,

P��kM� 

�

1 − �

1

kM

 �1/�1−�� exp� − �

�/�1 − ��� � f��,�� .

�11�

If the ratio f�� ,�� is small enough, these elements that
were supposed to be in k�kM can be regarded as additional
elements with k=0, changing P�0� into P�0�+ f�� ,��, and
they will not disrupt the stationary power-law distribution.
However, when f�� ,�� is not small, the whole distribution
can be disrupted �see how P�0� affects all elements in Eq.
�3��, and the distribution will settle into another type of sta-
tionary distributions which decay much faster than scaling
ones do. Therefore, the scaling condition can be written as
f�� ,���� where 0���1. In Fig. 3, we plot this condition

FIG. 1. Evolution of the cumulative distribution P��k� when
N=105, �=1, and �=0.1 in a log-log plot. From an initial distribu-
tion P�k�=
k1, we observe how P��k� evolves as the number of
timesteps T varies from 0 to 109 ���, 1010 ���, 1011 ���, 1012 ���.
We can observe that P��1�
��=0.1�, which leads us to P�0�=1
− P��1�
1−�. The dashed line represents the theoretical station-
ary distribution P��k�=1/ �9k+1� at �=0.1.

FIG. 2. When N=104 and T=109–1010, P�0� values are found
numerically for various � and � values �averaged over ten runs�. �a�
P�0� versus � when �=0.1 ���, 0.3 ���, 0.5 ���, 0.7 ���, 0.9 ���.
P�0� is close to 1−� when � is greater than a certain value for a
given �. �b� P�0� when � for �=1 ���, 5 ���, 10 ���, 100 ���.
P�0� is close to 1−� when � is less than a certain value for a given
�. Moreover, we observe that P�0�=1/ �1+�� from Eq. �7� are sat-
isfied when �=1. The dashed line represents P�0�=1−�.
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when �=10−3, estimated from the simulation results. The
critical boundary �=�c��� that separates the scaling region
from the nonscaling region was obtained from f�� ,��=�,

�c��� =
�

1 − �
ln��−1�1/�1−��� . �12�

The scaling region shown in �� ,�� space corresponds well
with results in Fig. 2, and is surprisingly big. If � is big
enough, the system exhibits the power law for almost any
value of �, which means that just a slight advantage given to
the rich is enough to make the system follow the Zipf’s law.
In Fig. 4, we observe several cases with various parameter
values using numerical simulations. In Fig. 4�a�, we fix �
at 5 and vary �, to observe that �c�5��0.5. In Fig. 4�b�,
we vary � and � to observe that �c��� increases as
� increases. When �� ,�� is in the power-law region
����c����, the shape of the stationary distribution is deter-
mined by � only, and � only changes the position of the
cutoff, kM. On the other hand, the shape of the stationary
distribution will be determined by both � and � for nonscal-
ing cases ����c����.

IV. POSSIBLE APPLICATIONS

So far we have proposed a simple model using general
terms such as elements and quantities. Here we discuss three
examples where this mechanism can be applied.

A. Personal wealth

The first example is the wealth distribution with people
and their assets, which is known to exhibit the power law
especially for the richest people. In a society, the population
does not always grow, and their total amount of assets can be
assumed to be conserved. People also interact in many ways,
changing their assets, and the rich have an advantage over
the poor. In our model, � becomes the average amount of
assets per person, and � is the parameter representing the

advantage for the rich. Because � is usually big enough,
the power law with the Zipf exponent, �=2, will emerge
for almost any value of �, while the empirical data show
�
2.091 �1�. There are other nongrowth models for the
power-law wealth distributions, which use the binary inter-
actions of the traders �9–11�.

B. City sizes

The second example is the distribution of city sizes with
cities and their sizes. This is the original Zipf’s law, and the
Zipf exponent has become famous for this phenomenon
�originally Zipf used the rank statistics and the exponent is 1,
which is equivalent to �=2 in our case�. Our model can be
applied to this case when the number of cities is fixed, and
the overall population does not grow. Here an interaction is
the migration of a person �or a family� from one city to
another. People tend to move from a small city to a larger
city; hence, � is the parameter representing this tendency.
Then, the Zipf’s law will emerge from our model. It will be
unrealistic if P�0� is not close to 0 because there are no
empty cities usually. But when � is big enough and � is

FIG. 3. The scaling condition in �� ,�� space. The dashed line
represents f�� ,��=� when �=10−3. As � increases, the range of �
for the power law approaches 0���1.

FIG. 4. Stationary distributions for various �� ,�� values.
Dashed lines represent theoretical stationary probability distribu-
tions for given � values, and data points are logarithmically binned
for scaling cases. �a� When N=106 and T=7�1011, � is fixed at 5,
and �=0.2 ���, 0.4 ���, 0.6 ���, 0.8 ���, 1.0 ���. The power-law
distributions are observed clearly when �=0.2 and 0.4. �b� Ex-
amples of various �� ,�� values exhibiting power-law distributions
after T=1012: N=106, �=1, �=0.2 ���; N=105, �=10, �=0.4 ���;
N=104, �=100, �=0.6 ���; N=103, �=1000, �=0.8 ���.
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close to 1, the distribution will still be scaling and P�0� will
be close to 0. Even with a drawback of not taking account of
the growth of cities from within unlike other models �3�, this
mechanism has some merits to be regarded as another valid
explanation of the Zipf’s law: �1� the model produces the
Zipf exponent naturally with a simple mechanism; �2� the
migration of people between cities is well represented by the
model; �3� the attractiveness of the bigger cities is also well
represented. There also can be a different approach. For
example, Zanette and Manrubia �4� used the stochastic linear
model, which assumes neither the growth nor the binary
interactions.

C. Scale-free networks

The last example is the network with nodes and their de-
grees. A network is an entity that consists of nodes and links,
while the degree of a node is the number of links connected
to a given node. In many systems represented by networks,
degrees of nodes have been found to follow power-law dis-
tributions �hence called scale-free networks�. Based on the
mechanism of linear preferential attachment proposed by
Ref. �20�, many extended models have been followed
�24–27�. In these models, the assumption of the growth of
nodes and links is crucial, and interactions between nodes
are either ignored or used as an extra feature �26�. This ap-
proach is valid for many scale-free networks, but not suitable
for nongrowing networks, in which node interactions are vi-
tal to their dynamics. Our model can generate this kind of
scale-free networks by interpreting the interaction between

nodes as the rewiring process. When nodes i and j are cho-
sen, the rewiring process changes the link from �i� , i� to
�i� , j� where i� is a pivot node chosen from nodes that are
linked to i �loops and multiple links are allowed�. Therefore,
from our model, networks with power-law degree distribu-
tions can be generated through only rewiring, and the results
will be presented in a forthcoming paper �28�. The network
concept is actually related to many scaling phenomena, since
they can be represented by networks directly
�13,14,16,17,20� or indirectly �29�.

V. CONCLUSIONS

We have proposed a preferential-redistribution mecha-
nism that generates power-law distributions with the Zipf
exponent for certain parameter ranges, and this scaling re-
gion in our parameter space has been found analytically us-
ing some numerical results. Since this scaling region is big
enough and the mechanism is very simple, our model can be
a good candidate to be used as a base mechanism for models
describing some scaling phenomena, and three possible ap-
plications have been discussed here. Like other models, our
model has limited applicability, but we believe that it can be
extended to suit specific needs as a part of more realistic
models, or generalized to have more flexible features.
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